4,800 research outputs found

    Galactic extinction and Abell clusters

    Get PDF
    In this paper, we present the results of comparing the angular distribution of Abell clusters with Galactic HI measurements. For most subsamples of clusters considered, their positions on the sky appear to be anti-correlated with respect to the distribution of HI column densities. The statistical significance of these observed anti-correlations is a function of both richness and distance class, with the more distant and/or richest systems having the highest significance (~3 sigma). The lower richness, nearby clusters appear to be randomly distributed compared to the observed Galactic HI column density.Comment: 5 pages, uuencoded compressed postscript file. Figures included. Accepted by MNRA

    Acoustic Oscillations in the Early Universe and Today

    Get PDF
    During its first ~100,000 years, the universe was a fully ionized plasma with a tight coupling by Thompson scattering between the photons and matter. The trade--off between gravitational collapse and photon pressure causes acoustic oscillations in this primordial fluid. These oscillations will leave predictable imprints in the spectra of the cosmic microwave background and the present day matter-density distribution. Recently, the BOOMERANG and MAXIMA teams announced the detection of these acoustic oscillations in the cosmic microwave background (observed at redshift ~1000). Here, we compare these CMB detections with the corresponding acoustic oscillations in the matter-density power spectrum (observed at redshift ~0.1). These consistent results, from two different cosmological epochs, provide further support for our standard Hot Big Bang model of the universe.Comment: To appear in the journal Science. 6 pages, 1 color figur

    The Interplay of Cluster and Galaxy Evolution

    Full text link
    We review here the interplay of cluster and galaxy evolution. As a case study, we consider the Butcher-Oemler effect and propose that it is the result of the changing rate of cluster merger events in a hierarchical universe. This case study highlights the need for new catalogs of clusters and groups that possess quantified morphologies. We present such a sample here, namely the Sloan Digital Sky Survey (SDSS) C4 Catalog, which has been objectively-selected from the SDSS spectroscopic galaxy sample. We outline here the C4 algorithm and present first results based on the SDSS Early Data Release, including an X-ray luminosity-velocity dispersion (L_x-sigma) scaling relationship (as a function of cluster morphology), and the density-SFR relation of galaxies within C4 clusters (Gomez et al. 2003). We also discuss the merger of Coma and the NGC4839 group, and its effect on the galaxy populations in these systems. We finish with a brief discussion of a new sample of Hdelta-selected galaxies (i.e., k+a, post--starburst galaxies) obtained from the SDSS spectroscopic survey.Comment: Invited review at the JENAM 2002 Workshop on "Galaxy Evolution in Groups and Clusters", Porto, Sep 5-7 2002, eds. Lobo, Serote-Roos and Biviano, Kluwer in pres

    The significance of the integrated Sachs-Wolfe effect revisited

    Full text link
    We revisit the state of the integrated Sachs-Wolfe (ISW) effect measurements in light of newly available data and address criticisms about the measurements which have recently been raised. We update the data set previously assembled by Giannantonio et al. to include new data releases for both the cosmic microwave background (CMB) and the large-scale structure (LSS) of the Universe. We find that our updated results are consistent with previous measurements. By fitting a single template amplitude, we now obtain a combined significance of the ISW detection at the 4.4 sigma level, which fluctuates by 0.4 sigma when alternative data cuts and analysis assumptions are considered. We also make new tests for systematic contaminations of the data, focusing in particular on the issues raised by Sawangwit et al. Amongst them, we address the rotation test, which aims at checking for possible systematics by correlating pairs of randomly rotated maps. We find results consistent with the expected data covariance, no evidence for enhanced correlation on any preferred axis of rotation, and therefore no indication of any additional systematic contamination. We publicly release the results, the covariance matrix, and the sky maps used to obtain them.Comment: 19 pages, 10 figures. MNRAS in pres

    A Bayesian Inference Analysis of the X-ray Cluster Luminosity-Temperature Relation

    Get PDF
    We present a Bayesian inference analysis of the Markevitch (1998) and Allen & Fabian (1998) cooling flow corrected X-ray cluster temperature catalogs that constrains the slope and the evolution of the empirical X-ray cluster luminosity-temperature (L-T) relation. We find that for the luminosity range 10^44.5 erg s^-1 < L_bol < 10^46.5 erg s^-1 and the redshift range z < 0.5, L_bol is proportional to T^2.80(+0.15/-0.15)(1+z)^(0.91-1.12q_0)(+0.54/-1.22). We also determine the L-T relation that one should use when fitting the Press- Schechter mass function to X-ray cluster luminosity catalogs such as the Einstein Medium Sensitivity Survey (EMSS) and the Southern Serendipitous High- Redshift Archival ROSAT Catalog (Southern SHARC), for which cooling flow corrected luminosities are not determined and a universal X-ray cluster temperature of T = 6 keV is assumed. In this case, L_bol is proportional to T^2.65(+0.23/-0.20)(1+z)^(0.42-1.26q_0)(+0.75/-0.83) for the same luminosity and redshift ranges.Comment: Accepted to The Astrophysical Journal, 20 pages, LaTe

    Detecting the Baryons in Matter Power Spectra

    Full text link
    We examine power spectra from the Abell/ACO rich cluster survey and the 2dF Galaxy Redshift Survey (2dfGRS) for observational evidence of features produced by the baryons. A non-negligible baryon fraction produces relatively sharp oscillatory features at specific wavenumbers in the matter power spectrum. However, the mere existence of baryons will also produce a global suppression of the power spectrum. We look for both of these features using the false discovery rate (FDR) statistic. We show that the window effects on the Abell/ACO power spectrum are minimal, which has allowed for the discovery of discrete oscillatory features in the power spectrum. On the other hand, there are no statistically significant oscillatory features in the 2dFGRS power spectrum, which is expected from the survey's broad window function. After accounting for window effects, we apply a scale-independent bias to the 2dFGRS power spectrum, P_{Abell}(k) = b^2P_{2dF}(k) and b = 3.2. We find that the overall shapes of the Abell/ACO and the biased 2dFGRS power spectra are entirely consistent over the range 0.02 <= k <= 0.15hMpc^-1. We examine the range of Omega_{matter} and baryon fraction for which these surveys could detect significant suppression in power. The reported baryon fractions for both the Abell/ACO and 2dFGRS surveys are high enough to cause a detectable suppression in power (after accounting for errors, windows and k-space sampling). Using the same technique, we also examine, given the best fit baryon density obtained from BBN, whether it is possible to detect additional suppression due to dark matter-baryon interaction. We find that the limit on dark matter cross section/mass derived from these surveys are the same as those ruled out in a recent study by Chen, Hannestad and Scherrer.Comment: 11 pages of text, 6 figures. Submitted to Ap
    • …
    corecore